

AUGUSTA UNIVERSITY MEDICAL COLLEGE **OF GEORGIA**

Low-Level Electromagnetic Fields Attenuate the Inducibility of Atrial Fibrillation

Daniel Sohinki, MD, MS¹, Stavros Stavrakis, MD, PhD², Sunny Po, MD, PhD², Julie A. Stoner, PhD², Benjamin J. Scherlag, PhD²

¹Medical College of Georgia, Augusta University, Augusta, Georgia

²University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

INTRODUCTION

- Atrial fibrillation (AF) remains the most common sustained dysrhythmia encountered in clinical practice
- Current therapies aimed at rhythm control have disappointing efficacy at long-term sinus rhythm maintenance. Further, anti-arrhythmic drug therapy and catheter ablation have a number of associated side effects and risks
- Autonomic nervous system (ANS) remodeling contributes to AF pathogenesis in multiple ways, and recent studies have suggested that autonomic modulation may be an effective therapy for AF, with a variety of modalities under investigation
- The purpose of this study was to examine the effect of low-level electromagnetic field (LL-EMF) stimulation as a method of autonomic stimulation and AF suppression

METHODS

- Population: Paroxysmal AF patients, age 18-85
- Exclusion criteria: Valvular AF, persistent AF, left ventricular systolic dysfunction, prior ablation
- Study design: Randomized, sham-controlled, double blinded.
 - Active group: Pulsed LL-EMF (0.032 µG at 0.89 Hz) via a Helmholtz coil placed around the head and neck (Figure 1)
 - Sham group: Patient was positioned in the study device, but no stimulation was applied
- Following initial EP study, AF was induced by burst atrial pacing from the right atrial appendage [pacing cycle length (CL) 250-200 ms or the shortest CL that captured 1:1]. DC cardioversion was performed if AF lasted longer than 15 minutes
- Following this, the stimulation protocol (active or sham) was turned on for 60 minutes. During this time, trans-septal access and mapping were performed, but no ablation occurred
- After 60 minutes, repeat AF induction occurred, again noting duration of induced-AF
- Primary endpoint: Change in duration of pacinginduced AF

	Control	EMF	
G	(n=6)	(n=7)	p-v
Age (years)	60 (58-63)	60 (56-65)	
ВМІ	29.6 (27-35)	28.0 (20.3 – 36)	
Male	3 (0.5)	3 (0.43)	
Time from diagnosis (months)	30 (24-72)	24 (12-48)	
Hypertension	3 (0.5)	4 (0.57)	
Diabetes	1 (0.17)	3 (0.43)	
Coronary Disease	0 (0)	1 (0.14)	
Obstructive Sleep Apnea	3 (0.5)	3 (0.43)	
Ejection Fraction (%)	55 (55-60)	55 (55-59)	
CHA2DS2VASc Score	1 (0-2)	2 (1-2)	
Beta-Blocker	3 (0.5)	4 (0.57)	
ACEI/ARB	0 (0)	2 (0.29)	
Amiodarone	0 (0)	2 (0.29)	
Other AAD	2 (0.33)	5 (0.71)	
Left Atrial Size (cm)	4.37 (4.28-4.5)	3.9 (3.35-5.6)	
Left Ventricular Septal Thickness (cm)	1.1 (1.1-1.3)	1.1 (1.05-1.3)	
Cryoballoon ablation	3 (0.5)	4 (0.57)	

Table 1. Baseline characteristics *Data presented as median (interquartile range) or count (proportion) as appropriate

CLINICAL IMPLICATIONS

- LL-EMF is under investigation as a therapeutic modality in a variety of conditions, and may have a role as method of non-invasive autonomic modulation
- This study provides proof-of-concept for LL-EMF as a non-invasive therapy for AF via vagal stimulation
- The real-world applicability of these results will require further study
 - Commercially-available LL-EMF stimulator currently approved for relaxation therapy – use as AF treatment in the ambulatory setting?

CONCLUSIONS

- LL-EMF application resulted in a reduction in pacinginduced AF duration after 60 minutes of stimulation as compared to sham stimulation
- Notably, fewer patients in the LL-EMF group required cardioversion after the 60-minute period (1/7 vs. 5/6, p = 0.03). Thus, the effect size may have been larger had each episode of AF been allowed to continue until spontaneous termination
 - Importantly, there were no adverse events related to the study device

0.71

0.90

>0.9

>0.9 0.56

>0.9

>0.9

0.93

0.22

>0.9

0.46

0.29

0.91

0.96

>0.9

REFERENCES

- Saxena A, Jacobson J, Yamanashi W, Scherlag B, 0.62 Lamberth J, Saxena B. A hypothetical mathematical construct explaining the mechanism of biological amplification in an experimental model utilizing picoTesla (PT) electromagnetic fields. Medical hypotheses. 2003;60(6):821-39
 - Scherlag BJ, Yamanashi WS, Hou Y, Jacobson JI, Jackman WM, Lazzara R. Magnetism and cardiac arrhythmias. Cardiol Rev. 2004:12(2):85-96
- 0.46 Yu L, Dyer JW, Scherlag BJ, Stavrakis S, Sha Y, Sheng X, et al. The use of low-level electromagnetic fields to suppress atrial fibrillation. Heart rhythm. 2015;12(4):809-17

ACKNOWLEDGEMENTS

Dr. Jerry Jacobson and Allen Braswell of Magneceutical Health are acknowledged for their invaluable contributions to this work

Figure 1. Study device